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An aldol reaction of 2,2-disubstituted trimethoxysilyl enol ethers with aldehydes catalyzed by a dilithium
salt of (R)-3,30-dichlorobinaphthol afforded the corresponding aldol adducts with quaternary carbon
centers in high anti-selectivities (syn:anti = �1:50) and enantioselectivities (�90% ee).
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Scheme 1. Aldol reaction of trimethoxysilyl enol ether.
The development of catalytic enantioselective methods to
construct quaternary asymmetric carbon centers represents a
continuing challenge in organic chemistry.1,2 Although the aldol
reaction is one of the most important methods for forming
carbon–carbon bonds,3 there are only few examples of asymmetric
aldol reactions creating quaternary stereogenic centers.4 Although
high enantioselectivities have been obtained in some cases, the
observed syn:anti selectivities remain unsatisfactory because
sterically congested aldol adducts with a hydroxy group on the
b-position of the carbonyl function easily undergoes a retro-aldol
reaction to reduce the chemical yields and the stereoselectivities
of the product.

The development of asymmetric aldol reactions has been led by
Lewis acid-catalyzed reactions of trimethylsilyl enol ethers with
carbonyl compounds. Recently Lewis base-catalyzed reactions of
trichlorosilyl enol ethers5,6 have attracted considerable attention
because the aldol reaction of the trichlorosilyl enol ether gives
the syn-adduct from the Z-enol ether and the anti-adduct from
the E-enol ether due to their cyclic transition state structures
involving hypervalent silicates.7

In our pursuit to develop base-catalyzed asymmetric reactions
involving hypervalent silicates,8 we had previously reported an
asymmetric aldol reaction of trimethoxysilyl enol ethers (Scheme
1, R1 = H),9 which are more stable than trichlorosilyl enol ether.
The reaction conditions of the trimethoxysilyl enol ether are suffi-
ciently mild that the retro-aldol reaction, which is the main prob-
lem in constructing quaternary stereogenic centers, should be
inhibited. Herein we report the construction of quaternary stereo-
genic centers using the asymmetric aldol reaction of trimethoxy-
silyl enol ethers (Scheme 1, R1 = alkyl).10
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Trimethoxysilyl enol ether11,12 can be prepared by reacting lith-
ium enolate and trimethoxysilyl chloride, or by reacting enone and
trimethoxysilane with a Rh catalyst, but the limitation of the sub-
strate has not been resolved. Thus, to prepare the 2,2-disubstituted
trimethoxysilyl enol ethers to construct quaternary carbon centers,
we have developed a more practical and convenient method.
Instead of trimethoxysilyl chloride, we employed trimethoxysilyl
triflate,13 which was easily prepared in situ by reacting allyltri-
methoxysilane and triflic acid. The resulting trimethoxysilyl triflate
was reacted with 2-methylcyclohexanone at 0 �C in the presence of
triethylamine to smoothly afford the corresponding trimethoxysi-
lyl enol ether in a high yield as a mixture of regioisomers. Fortu-
nately, we have found that refluxing the mixture of regioisomers
in chloroform in the presence of tetra-n-butylammonium iodide
afforded the desired 2,2-disubstituted trimethoxysilyl enol ether
(Scheme 2).14 This method provided facile access to suitable sub-
strates for constructing quaternary asymmetric carbon centers by
the aldol reaction.

With the desired substrate in hand, we tested the aldol reaction
of the trimethoxysilyl enol ether 2 derived from 2-methyl-
cyclohexanone with benzaldehyde in the presence of dilithium
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Scheme 2. Preparation of 2,2-disubstituted trimethoxysilyl enol ether.

4428 T. Ichibakase et al. / Tetrahedron Letters 49 (2008) 4427–4429
3,3-bromobinaphtholate (10 mol %), according to the procedure for
the aldol reaction of the silyl enol ether 1 derived from cyclohexa-
none (Table 1, entry 1).9 The reaction proceeded smoothly, but the
chemical yield and stereoselectivities of the product were not
reproducible in multiple experiments, because the retro-aldol
reaction proceeded under both the quenching condition (HCl aq
or KF-buffer) and silica gel column chromatography, wherein a
non-catalytic process gave a mixture of isomers. After considerable
screening of the quenching conditions, we found that an aqueous
Table 1
Aldol reaction of trimethoxysilyl enol ethers with benzaldehyde

(CH2)n

OSi(OMe)3

PhCHO +

(C

O
R1 R

catalyst
(10 mol %)

THF

sy

Entry Enol ether R1 n X Conditions

1d 1 H 2 Br �23 �C, 0.5
2 2 Me 2 Br �23 �C, 0.5
3 2 Me 2 Cl �45 �C, 3 h
4 3 Et 2 Cl �45 �C, 3 h
5 4 Me 1 Cl �45 �C, 3 h

a Isolated as benzoates.
b Determined by NMR.
c Determined by chiral HPLC.
d Previously reported in lit. 9.

Table 2
Aldol reaction of aldehydes

OSi(OMe)3

R2CHO +

O
Me

M
catalyst
(10 mol %)

THF,  3 h

syn-2

 -45 C̊,

Entry R2 X Adduct

1 Ph Cl 6a
2 4-MeOC6H4 Cl 6b
3 4-CF3C6H4 Cl 6c
4 2-Naphthyl Cl 6d
5 (E)-PhCH@CH Cl 6e
6d PhCH2CH2 Br 6f

a Isolated as benzoates.
b Determined by NMR.
c Determined by chiral HPLC.
d �23 �C, 3 h.
solution of potassium fluoride/formic acid minimized the retro-
aldol reaction. The crude product before isolation was benzoylated,
which suppressed isomerization by the retro-aldol reaction in
silica gel column.

Using these work-up conditions and derivatization, we found
that the stereoselectivities (syn:anti = 1:27, 84% ee for anti isomer;
Table 1, entry 2) of the reaction were dramatically increased (entry
1 vs entry 2).15 Switching the substituents on the ligand and
decreasing the temperature gave better results, but the reaction
time was slightly elongated (entry 3). The stereoselectivities were
affected by the structure of the enol ether. The high reactivity
remained in the reaction of ethyl substituted substrate 3, although
the observed stereoselectivities decreased slightly (entry 4). Sur-
prisingly, reducing the ring number of enol ether from six to five
(4) gave a lower anti-selectivity, but the chemical yield and enanti-
oselectivity were the same as six-membered substrate 2 (entry 5).

Table 2 summarizes the results obtained with other aldehydes
and silyl enol ether 2. Introducing an electron-donating or
electron-deficient substituent on the benzene ring diminished
the stereoselectivities (entries 2 and 3), but the reaction of 2-naph-
thaldehyde (entry 4) gave a result similar to that of benzaldehyde.
The best result (98% yield, syn:anti = 1:20, 90% ee (anti)) was
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Figure 1. Plausible transition state.
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obtained in the reaction of 2 with cinnamaldehyde (entry 5).16,17

The obtained syn:anti ratios were far better than the ratios previ-
ously reported for the construction of quaternary carbon centers
in enantioselective aldol reactions.18 The reaction of aliphatic
aldehyde (entry 6), which often lacks reactivity and selectivity in
a Lewis base-catalyzed aldol reaction, maintained a high enantio-
selectivity using 3,30-dibromobinaphthol as a catalyst precursor,
though the syn:anti selectivity was unsatisfactory.19

In every case, the anti-adduct was predominantly formed from
E-enol ether without exception, which suggests that these reaction
proceed via a chair-like six-membered transition state shown in
Figure 1, though the details are unclear.

In conclusion, we have developed a novel method to construct
quaternary carbon centers employing the aldol reaction of trime-
thoxysilyl enol ethers, and successfully controlled two successive
stereogenic centers. The observed anti-selectivity is the highest
reported to date for constructing quaternary carbon centers by
an enantioselective aldol reaction. These results demonstrate the
synthetic utility of trimethoxysilyl enol ethers as aldol donors.
Further studies to enhance the enantioselectivity and to explore
the mechanism are currently in progress.
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